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Machine learning

 dataset D={X, Y}

 Input: X

 Output: Y

 Learning: Y=F(X) or P(Y|X)

Y=F(X) P(Y|X)

 Fitting and Generalization

 Types: view of  models
 Non-parametric model 

 Y=F(X; 𝑥1, 𝑥2…𝑥𝑛)
 Parametric model

 Y=F(X; 𝜃)



Neural network

• Neural network

– Y=F(X)=𝑓𝑇(𝑓𝑇−1(…𝑓1(𝑋)))

– 𝑓𝑖 𝑥 = 𝑔(𝑊𝑥 + 𝑏)

• Nonlinear activation

– sigmod

– Relu



Deep neural network

• Why deep?

– Powerful representation capacity



Key properties of Deep learning

• End to End learning 

– no distinction between feature extractor 
and classifier

• “Deep” architectures:

– Hierarchy of simpler non-linear modules



Applications and techniques of DNNs

• Successful applications in a range of domains
– Speech
– Computer Vision
– Natural Language processing

• Main techniques in using deep neural networks networks
– Design the architecture

• Module selection and Module connection
• Loss function

– Train the model based on optimization
• Initialize the parameters
• Search direction in parameters space
• Learning rate schedule
• Regularization techniques
• …
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Training of Neural Networks
• Multi-layer perceptron (example)

(1, 0, 0)𝑇

input

𝑥1

𝑥2

𝑥3

𝑥0 = 1 ℎ0
(1)

= 1

output

hidden layer

 MSE Loss: L=(𝐲 −  𝒚)2

 1 Forward  calculate y：

𝒂(𝟏) = 𝑾(𝟏) ∙ 𝒙

𝒉(𝟏) = 𝜎 𝒂(𝟏)

𝒂(𝟐) = 𝑾(𝟐) ∙ 𝒉 𝟏

𝒚 = 𝜎 𝒂(𝟐)
d L
𝒅𝑾(𝟐)=

d L
𝒅𝒂(𝟐)

𝒉(𝟏)

d L
𝒅𝑾(𝟏)=

d L
𝒅𝒂(𝟏)

𝒙

d L

𝐲
=2(𝐲 −  𝒚)

d L
𝒅𝒂(𝟐)

=
d L
𝐝𝐲

∙ 𝜎 𝒂(𝟐) ∙ (1−𝜎 𝒂(𝟐) )

d L
𝒅 𝒉(𝟏)

=
d L
𝒅𝒂(𝟐)

𝑾(𝟐)

d L
𝒂(𝟏)

=
d L
𝒅 𝒉(𝟏)

∙ 𝜎 𝒂(𝟏) ∙ (1−𝜎 𝒂(𝟏) )

d L
𝒅𝒙

=
d L
𝒅𝒂(𝟏)

𝑾(𝟏)

 2 Backward，Calculate 
d L
𝒅 𝒙

：

 3 calculate gradient 
d L
𝒅𝑾

：



Optimization in Deep Model

• Challenge:
– Non-convex and local optimal points
– Saddle point
– Severe correlation between dimensions and highly non-isotropic 

parameter space (ill-shaped) 

• Goal:

• Update Iteratively:



First order optimization
• First order stochastic gradient descent (SGD):

– The direction of the gradient

– Gradient is averaged by the sampled examples

– Disadvantage
• Over-aggressive steps on ridges

• Too small steps on plateaus

• Slow convergence

• non-robust performance.

Figure 2: zig-zag iteration path for SGD



Advanced Optimization
• Estimate curvature or scale

– Quadratic optimization 
• Newton or quasi-Newton

– Inverse of Hessian 

• Natural Gradient
– Inverse of FIM

– Estimate the scale
• AdaGrad
• Rmsprop
• Adam

• Normalize input/activation
– Intuition：the landscape of cost w.r.t parameters is controlled 

by Input/activation L=(f(x,𝜃),y)
– Method:  Stabilize the distribution of input/activation

• Normalize the input explicitly
• Normalize the input implicitly (constrain weights)

Iteration path of SGD (red) and NGD (green)



Some intuitions of normalization for 
optimization

• How Normalizing activation affect the 
optimization?
– 𝑦 = 𝑤1𝑥1 +𝑤2𝑥2+b

– L=(𝑦 −  𝑦)^2

𝑤1

𝑤2
0 < 𝑥1 < 2

0 < 𝑥2 < 0.5

𝑤1

𝑤2 0 < 𝑥1
′ = 𝑥1/2 < 1

0 < 𝑥2
′ = 𝑥2 ∗ 2 < 1

L(𝑤1, 𝑤2) L(𝑤1, 𝑤2)
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Batch Normalization--motivation

• Solving Internal Covariate Shift

• Whitening Input benefits optimization (1998,Lecun, 
Efficient back-propagation)
– Centering
– Decorrelate
– stretch

ℎ1 = 𝑤𝑥

ℎ2 = 𝑤ℎ1

decorrelate

centering

stretch

y=Wx, MSE loss



Batch Normalization--method

• Only standardize input: decorrelating is  expensive

– Centering

– Stretch

• How to do it?

–  𝑥 =
𝑥−𝐸(𝑥)

𝑠𝑡𝑑(𝑥)

centering stretch



Batch Normalization--training

• Forward 



Batch Normalization--training

• Backward 



Batch Normalization--Inference

• Inference (in paper)

• Inference (in practice)

– Running average 

• 𝐸 𝑥 = 𝛼 𝜇𝐵 + (1 − 𝛼)𝐸 𝑥

• 𝑉𝑎𝑟 𝑥 = 𝛼 𝜎𝐵
2 + 1 − 𝛼 𝑣𝑎𝑟 𝑥



Batch Normalization—how to use

• Convolution layer

• Wrapped as a module
– Before or after nonlinear?

• For shallow module, after nonlinear (Layer <11)
• For deep model, before nonlinear

– Advantage of before nonlinear
• For Relu, half activated
• For sigmod, avoiding saturated region.

– Advantage of after nonlinear
• The intuition of whitening



Batch Normalization—how to use

• Example:

Residual block (CVPR 2015) Pre-activation Residual block 
(ECCV 2016)



Batch Normalization—characteristics 

• For accelerating training：
– Weight scale invariant: Not sensitive for weight 

initialization

– Adjustable learning rate

– Large learning rate
• Better conditioning, (1998 Lecun)

• For generalization

– Stochastic, works like Dropout



Batch Normalization

• Routine in deep feed forward neural networks, 
especially for CNNs.

• Weakness
– Can not be used for online learning 

– Unstable for small mini batch size

– Used in RNN with caution



Batch Normalization– for RNN

• The extra problems need be considered：

– Where BN should put?

– Sequence data 

• 2016,ICASSP, Batch Normalized Recurrent Neural 
Networks
– How to put BN module

– Sequence data problem
• Frame-wise normalization
• Sequence-wise normalization



Batch Normalization for RNN

• 2017, ICLR, Recurrent Batch Normalization
– How to put BN module

– Sequence data problem
• T_max Frame-wise normalization
• It depends…..
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Norm-propagation (2016, ICML)
• Target BN’s drawback: 

– Can not be used for online learning 
– Unstable for small mini batch size. 

• Data independent parametric estimate of 
mean and variance

– Normalize input: 0-mean and unit variance

– Assuming W is orthogonal 

– Derivate the nonlinear dynamic

• Relu: 



Layer Normalization (2016, Arxiv)
• Target BN’s drawback: 

– Can not be used for online learning 
– Unstable for small mini batch size 
– RNN

• Normalizing each example, over dimensions 

BN LN



Natural Neural Network (2015, NIPS)

• Canonical model(MLP):   ℎ𝑖 = 𝑓𝑖(𝑊𝑖ℎ𝑖−1 + 𝑏𝑖)

• Natural neural network

• Model parameters:

Ω = {,𝑉1, 𝑑1… , 𝑉𝐿, 𝑑𝐿}

• Whitening coefficients :
Φ = {,𝑈0, 𝑐0… ,𝑈𝐿−1, 𝑐𝐿−1}

• How about decorrelate the activations? 



Weight Normalization (2016, NIPS)
• Target BN’s drawback: 

– Can not be used for online learning 
– Unstable for small mini batch size
– RNN

• Express weight as new parameters

• Decouple  direction and length of vectors
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Centered Weight Normalization in 
Accelerating Training of Deep Neural Networks

Lei Huang, Xianglong Liu, Yang Liu, Bo Lang, Dacheng Tao 

International Conference on Computer Vision

(ICCV) 2017 



Motivation

• Stable distribution in hidden layer 

• Initialization method
– Random Init (1998, YanLecun)

• Zero-mean, stable-var

– Xavier Init (2010, Xavier)

– He Init (2015, He Kaiming)

• 𝑊~𝑁 0,
2

𝑛
, 𝑛 = 𝑜𝑢𝑡 ∗ 𝐻 ∗𝑊

• Keep desired characters during training



Method 

• Solution by re-parameterization

• Formulation: Constrained optimization problem:



Method 

• Gradient Information:

• Using proxy parameter v:

• Adjustable scale:



Method 
• Wrapped as module for practitioner:

– Forward



Method 
• Wrapped as module for practitioner:

– Backward



Discussion

• Beneficial Characters for training
– Stabilize the distributions 

– Better Conditioning of Hessian

• Regularization in improving performance



Experiments

• Data set

– Yale-B

– SVHN

– Cifar10, Cifar100

– ImageNet

• Reproducible experiments and Code: 
https://github.com/huangleiBuaa/CenteredWN



Experiments
• Ablation study

– YaleB, MLP{128,64,48,48}



Experiments
• MLP

– SVHN, {128,128,128,128,128}

SGD optimization

SGD+BN Adam optimization



Experiments
• MLP

– SVHN, {128,128,128,128,128}

SGD optimization

SGD+BN Adam optimization



Experiments
• Cifar10 & Cifar100

– BN-Inception

– Residual Network-56 layers.

Cifar-10 Cifar-100

Plain 6.14 ±0.04 25.52 ±0.15

WN 6.18 ±0.34 25.49 ±0.35

WCBN 6.01 ±0.16 24.45 ±0.54

Cifar-10 Cifar-100

Plain 7.34 ±0.52 29.38 ±0.14

WN 7.58 ±0.40 29.85 ±0.66

WCBN 6.85 ±0.25 29.23 ±0.14



Experiments

• ImageNet

– BN-Inception



Conclusion and Feature work

• Apply CWN module

– RNNs

– Reinforcement learning scene

• Conclusion:
– CWN shows the advantages in accelerating 

training and better generalization

– CWN module as a optimal module to replace 
linear module



Thanks !


